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An alternative approach to the treatment of the quantum chemical 
problems combining both, the MO and VB theory, is proposed. This 
approach retains the concept of resonance from the VB method, but it 
treats each particular bond in the MO sense. The me,thod is illustrated 
with a few examples. Relative stabilities of benzene, pentalene and 
cyclobutadiene are derived. A Hiickel (4m + 2) rule is derived for the 
annulenes. The charge polarisation in the case of the pentalene molecule 
is explained. A distortion of the pentalene molecule is considered and 
it is shown that within this approach the distortion depends on the charge 
polarisation. 
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1. Introduction 

In the treatment of the quantum chemical problems of molecules there are two 
major ab initio and semiempirical approaches, namely the molecular orbital 
(MO) theory and the valence bond (VB) theory. The MO approach is more 
suited to the rigorous description of molecules and it serves as the basis for most 
semiempirical theories in use today. However, this approach lacks chemical 
intuition, and even in its simplest form, which is the Hiickel theory, elaborate 
calculations have sometimes to be performed in order to obtain reasonable 
results. The VB approach which in its simplest form is the resonance theory 
(RT), is strongly supported by chemical intuition. However, the RT lacks 
mathematical rigour, it is only qualitative, and it gives sometimes completely 
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erroneous results. For example, this theory is unable to reproduce the Hiickel 
(4rn + 2) rule and it predicts cyclobutadiene to be stable. In its full form the VB 
approach is mathematically well founded, but due to the enormous number of 
resonance structures it is quite impractical for the actual calculations which would 
yield results comparable to the results of MO approaches. In addition, the full 
VB theory loses all its intuitive appeal. The question remains: is it possible to 
combine the MO and VB approaches in such a way as to retain the advantages 
of both methods? 

The MO and VB approaches follow physically completely different pictures. 
The basic physical picture behind the VB method is that the chemical bond 
results from the pairing of spins of the two electrons situated at the corresponding 
valence orbitals. The VB wavefunction describing the ~--electron bond is given 
by [1] 

,I, vB(1, 2) = ~ ( Ixa fb l -  [foxbl 

- / ~ [ W a ( 1 ) W b ( 2 )  + Wa (2)Wb (1)] ~-~[a (1)/3 (2)--/3(1)a (2)] 

(1) 
where X = wo~ and )? = w13 are spin orbitals with spins up and down, respectively, 
S is the overlap integral between atomic orbitals (AO's) wa and wb, and IX~)?b[ 
is the normalised Slater determinant. Numbers 1 and 2 refer to the coordinates 
of the first and second electron. The corresponding MO wavefunction is [2, 3] 

*MOO, 2) = Ir162 (2) 

where r is a normalised molecular orbital (MO) 

I 
r = 42(-i-T~(xo +x0.  

Let the Hamiltonian of the system be H = h + V, where h is one-particle and 
V is a two-particle operator. The energy of the VB state (1) is [1] 

EVB = (O +K) / (1  +S 2) (3) 

where 

0 = [ w,~(1)wb(2)Hwa(1)wb(2) d l  d2 

= (aa ]Hlbb) = (a [h la) + (b [h Ib) + (aa [bb) 
(4) 

g = (ablHlab) = (ablab)+2S(alhlb) 

and 

(alh[b)= I wa(1)hwb(1)dl S=Iwa(1 )wb(1 )d l  

(ablcd) = f w,~(1)wt,(1)Vwc(2)wa(2) d l  d2. 
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In Eq. (4) letters a and b stand for AO-s Wa and Wb. O and K are known as 
the Coulomb and exchange integral, respectively. The energy of the MO state 
(2) is [4] 

1 
EMo= ~-~[(alh[a) + (b lhlb ) + 2(alh lb )] 

1 
4 2(1 + S) i[(aa [aa) + (aa [bb) + 2(ab lab)+ 4(aa ]ab)]. (5) 

In the VB picture the bonding is attributed to the exchange integral K. The 
Coulomb integral O leads only to the destabilization of the bond, and in order 
to produce bonding the exchange integral K should be negative. This integral 
contains a two-particle contribution (ab lab), which is positive, and a one-particle 
contribution 2S(a[h[b), which is negative. In order that the bonding can be 
consistently attributed to the exchange integral K, the overlap S must be non- 
vanishing, i.e. AO-s wa and Wb should be nonorthogonal. 

In the MO picture however, the bonding is due to the one-particle resonance 
integral/3 -- (a]h]b), which is negative, while all the two-particle integrals (aalaa), 
(aa]bb) etc. in Eq. (5) are positive. This is in accord with intuition, since the 
mutual interaction of electrons should destabilize the molecule, while the stabiliz- 
ing factor is the interaction of electrons with the nuclei. This latter interaction 
is represented by h, the one-particle part of the Hamiltonian H. 

This simple feature is retained also in more complicated systems. In the VB 
picture the stabilizing factor is mainly the exchange integral K, while in the MO 
picture it is the one-particle resonance integral/3. At this point there are two 
serious criticisms one can raise to the VB approach. First, in this method the 
bonding is due to the exchange integral K which contains both, two- and 
one-particle contributions. The real cause of bonding is thus obscured. Second, 
in the orthonormalized base {wl} of AO-s the exchange integral K is positive 
(since S~j = &i), and hence at the lowest level of the approximation the VB 
approach can not explain any bonding. One way to avoid this problem is to 
parametrize K in the spirit of a semiempirical approach [5, 6]. One thus obtains 
a negative value of K, consistent with bonding. However, this negative semi- 
empirical value of K is clearly inconsistent with the assumption of the orthogonal- 
ity of AO-s w~. Another solution to the problem is to introduce more and more 
VB structures to produce bonding in an ab initio approach. This is, however, 
not very appealing either. The real cause of bonding is quite obscured and the 
convergence is poor. 

The MO approach does not suffer from these deficiencies. The bonding can be 
consistently attributed to the one-particle resonance integrals/3 = (a[hlb), and 
the mechanism of bonding qualitatively does not depend on the orthogonality 
or nonorthogonality of the basic set w~ of AO-s. Already in the simplest Hiickel 
theory there is bonding due to the resonance integral/3. More sophisticated MO 
theories take into account two-particle interactions, but the main contribution 
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to the bonding is still due to the one-particle terms. This hierarchy of approxima- 
tions is implicitly contained in different MO theories. However, in the VB 
approach this order is inverted, i.e. two-particle interactions are first taken into 
account, and then one-particle interactions enter the theory. In our opinion this 
is the main reason for the poor convergence and the relative failure of the VB 
approach in practice. 

In summary, the VB approach has a close connection with the familiar chemical 
concept of the bond, but it treats one- and two-particle energy contributions in 
an unnatural order. The MO approach treats those contributions correctly, but 
it has a poor connection with the chemical concept of a bond. 

2. Molecular Orbital Resonance Theory (MORT) 

In view of the respective advantages and disadvantages of the MO and VB 
approaches, one can combine the two methods in the following way [7, 8]: 

Describe the wave function ~ as a linear combination of different resonance 
structures of the type 

S = lul, Uz . . . .  , unl = ,1__~,  ( _ l ) P u l ( P 1 ) u 2 ( P 2 ) . . .  u , ( P n )  
V n !  e 

= !  E P (-1)Pup (1)up2(2) . . .  up.(n) (6)  

where us are excited or nonexcited bond orbitals 

1 
us = ulj = ~-~0(i +Xj) nonexcited BO 

us* * = uii = ~ - ,~ i )  excited BO. 

(7) 

Orbitals ;(i = w~ are spin atomic orbitals where w~ are atomic orbitals while r/ 
represents either a spin-up or a spin-down state. The set {w~} is assumed to be 
orthonormalised. All BO-s us and u* entering a given resonance structure (6) 
are assumed to be mutually disjunct, i.e. they have no spin AO ~ in common. 
To emphasise both, the MO and the VB character of this approach, we will call 
it the Molecular orbital Resonance Theory (MORT). 

It should be noted that the concept of localised bonds, such that each bond is 
described by the use of bond orbitals, is present in the so called PCILO method 
[9]. However, a PCILO approach is quite different from the MORT approach. 
In the PCILO approach BO-s are used to construct a determinant which serves 
as a zeroth order wave function. The lowest eigenvalue and eigenstate are then 
obtained by a Rayleigh-Schr6dinger perturbation expansion. PCILO is hence a 
perturbation theory, while the MORT approach is not. Hence the PCILO method 
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lacks the concept of resonance between different structures, which is one of the 
main features of the MORT approach. 

3. M O R T  M o d e l  wi th  the  H i i c k e l  H a m i l t o n i a n  

Let us illustrate the MORT approach in the case of even alternant hydrocarbon 
molecules. In the simplest variant of this approach we retain only MORT Kekul6 
structures and we use the Hiickel Hamiltonian [7, 8]. In this approximation the 
spin separation is assumed, i.e. each eigenstate is of the form 

= Acb~r (8) 

where A is the antisymmetrization operator, while 0~ and q~b are spin-up and 
spin-down substates, respectively. Both, O~ and &b are expressed as linear 
combinations of Kekul6 structures 

&a = Zt,  c~,K,, eb  = s (9) 

According to Eq. (6) each Kekul6 structure is of the form 

= ! l ( - 1 ) % ~ 1 ( 1 ) ~ 2 ( 2 )  �9 �9 �9 ~ .  (n)  (10)  K=L I,r . . . . .  

where all ~os are bonding BO-s, ~o~ = q~j = 1 /42(w~  + wi), such that corresponding 
AO-s wl and wj are adjacent to each other. We use the Hamiltonian operator 

H = A  - n I  

where A is the adjacency operator and n is the number of particles in the state 
r The operator H is essentially the Hiickel Hamiltonian. Eigenvalues of this 
operator express the energy in/~-units. Since H is a one-particle spin independent 
operator, the eigenvalue equation splits into two equations, one for the spin-up 
state &~ and one for the spin-down state r Assuming both states to contain 
the same number of electrons, the two equations are identical, and hence for 
the ground state t~a = t~b, i.e. E~ = Eb and �9 = Ar It is hence sufficient to 
perform all the calculations for the substate r alone. Using Eq. (10) one easily 
finds 

(KIK) = I q~l(1) �9 �9 �9 e n ( n )  51 ( - 1 ) % p 1 ( 1 )  �9 �9 �9 ~ p . ( n )  d l . . .  dn 
P 

= ~  (-1)P I q~l(1)r  I q~n(n)r  (11) 

Since different BO-s ~o~ contained in the Kekul6 structure K are mutually disjunct, 
the only permutation in Eq. (11) leading to the nonvanishing term is the identity 
permutation and hence 

(KIK> = 1 (12) 
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i.e. Kekul6 structures (10) are normalised. Similarly one finds 

(KIAJK) =Z (-1) e )~ [ q~ffl)~m(1)dl 
P s = l o  

"'" f ~ps(s)Ace,(s)ds"" f ~p.(n)r 

= Y" I ~o~(s)Aq~(s)ds : n. 
s = l  

The last line follows from 

I ~sAq~sds =~ I (w, + w,)A(wi + w,) ds 

= I wiAwjds = 1. 

since A is the adjacency operator and AO-s wi and wi contained in the BO ~s 
are adjacent to each other. Combining the above results one finds 

(g[nlg)  = 0 (13) 

i.e. in this approximation all the Kekul6 structures have zero energy. The 
eigenvalue of H expresses now how much a particular state ~b (which represents 
both, a spin-up and a spin-down substate) is stabilised through the resonance 
between different Kekul~ structures. 

Let us now consider the following examples. 

3.1. Annulenes and the Hfickel (4m+2) Rule 

Consider the cyclobutadiene molecule (Fig. 1). There are two Kekul6 structures 

K 1  = Jqo12, ~34[ =-~7[q~12(1)q~34(2)- ~p34(1)cp 12(2)]  

(14) 
- I  

K2 = J~23, ~4,1 = 4 [ ~ p a 3 ( 1 ) q ~ , 1 ( 2 )  - q;41(1)q;23(2)]. 
42  

1 2 

6 

o) 

I 
K~ = I ~ ,  ~a41 

II II 
K2 = I'e2a,~t., I 

b) 

Fig. 1. a Graph G of the cyclobutadiene 
molecule, b M O R T  Kekul6 structures of 

1 
cyclobutadiene. Wli =~(wi+  wj) are bond 
orbitals 
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One easily finds 

(KI[K2) = I q~ 12(1)q~34(Z)[q~23(1)q~41(2) - q~41(1)q~23(2)] d i d2 

= 1 / 4 - 1 / 4 = 0  

and 

(K1]AIKz)=I q~z(1)Aq~23(1)dl l q~34(2)q~41(2) d2 

+ I qo12(1)q023(1) d l  f qo34(2)aqo41(2) d2 

- I  q~12(1)Aq~41(1) d l  f ~P34(Z)~p23(2) d2 

- I  q~12(1)q~41(1) d l  I q~34(2)Aq~23(2) d2 

1 , 1 1 1 
= ~-e~--~-~-- O. 

Hence 

(K~IHIK2) = 0. (15) 

Within this picture the two Kekul4 structures do not interact with each other, 
and there is no extra stabilization due to the resonance between them. The full 
ground state is four-fold degenerate 

~ITI = AKtg21 ~2 = A K I I ~ 2  

'It3 = AK2Is 'I" 4 = AK2g2 (16) 

with the energy E -- 0. 

Consider as another example the benzene molecule (Fig. 2). Using the same 
approach as above one obtains 

(K~IK2) = �88 (K~IHIK2) = �88 

1 

4 

G 

a) b) 

Fig. 2. a Graph G of the benzene molecule, b MORT Kekul~ structures of benzene 
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The ground state is now 

= A~b~ ~b = K1 + K2 (17) 

with the eigenvalue E = 1.2. 

Already at this simplest level of approximation this approach explains qualita- 
tively the difference between the benzene and cyclobutadiene molecules. In the 
case of the cyclobutadiene molecule the two Kekul6 structures do not interact 
with each other, i.e. there is no extra stabilization due to the resonance. In the 
case of the benzene molecule there is a resonance energy of 1.2/3 stabilizing the 
ground state. This result should be contrasted to the result of the VB approach 
on the comparable level of approximation. In the VB theory the matrix element 
between the two Kekul6 structures is expressed in terms of two-particle exchange 
integrals which contributes to the stabilization in both cases. Accordingly, both 
molecules are predicted to be stable, contrary to experience. 

The above approach can be generalized to include arbitrary annulene molecules 
(Fig. 3). After  some straightforward algebra, which will be explained in a 
forthcoming paper [10], one finds 

$12 = ( K I I K 2 )  = [1 + (-1)"+112-" 

H i E  = (gllnlgz) = n [1 + (-1)"+112 -" (18) 

where 2n is the number of carbon atoms. In the case when n is even, S l Z  = H z 2  = O, 

and the two Kekul6 structures do not interact with each other. The ground state 
is degenerate both in the spin-up and spin-down subspaces, and there is no extra 
stabilization due to the resonance. A special case is the cyclobutadiene molecule, 
with n = 2. If, however, n is odd then 812 = 21-", H12 = n21-", and the full ground 
state is �9 = A~bq~ where ~b = K1 +K2 with the eigenvalue 

E .  = 2n/(1 + 2 "-1) (19) 

(see Fig. 4). 

We have derived here the well known H/ickel rule, stating that conjugated 
hydrocarbon molecules containing (4m + 2) ~r-electrons are stable, while conju- 
gated hydrocarbon molecules containing 4m ~--electrons are not. In the Hiickel 

1 l 1 

\ '~ ;J /  \ \ \ / / \ / /  

G K1=l~12,~3/., . . . .  ~']~ | 2n [ K2=['P23, ~/.,5 .. . .  ,~~ 1[ 

a) b) 
Fig. 3, a G r a p h  G of the  annulene  molecule'.~b M O R T  Kekul6 s t ructures  of annulene  
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E n 

t 

2 3 ~ 5 6 7 8 9 10 
n 

Fig. 4. MORT resonance energies of 2n-annulenes in/3 units. In the case of 4m-type anulenes (n 
even) there is no net stabilization due to the resonance between the two Kekul6 structures. The 
resonance stabilization in the case of (4m + 2)-annulenes (n odd) rapidly decreases with the increase 
of ring size 

theory, which is an MO approach, this rule is derived for annulene molecules 
and the corresponding ions and then postulated for other hydrocarbon com- 
pounds [11]. In the VB approach this rule is untractable [11], at least at the 
simplest level of approximation where only Kekul6 structures are taken into 
account. The MORT approach seems promising since it is able to produce such 
a simple qualitative result as the Hiickel rule whilst retaining at the same time 
the intuitive appeal of the bond picture. This is particularly true since a generaliz- 
ation of this rule to all even ~--electron hydrocarbons has been obtained [10]. 

3.3. Pentalene and Bond Length Alternation 

As another example take the pentalene molecule (Fig. 5). 

This molecule should be more stable than cyclobutadiene, but not as stable as 
benzene [12, 13]. There is a charge alternation along the perimeter of the 
molecule such that carbon atoms 1, 3, 4, 6, have a net positive charge, while 
carbon atoms 2, 5, 7, 8 have a net negative charge [12, 14, 15]. Pentalene is 

5 1 

3 

G K 1 K2 

a) b) 

Fig. S. a Graph G of the pentalene molecule, b MORT Kekul~ structures of pentalene 
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further distinguished by a notable bond length alternation [15, 16, 17]. The 
bond length alternation can be explained neither in the Hiickel [14] nor in the 
naive VB based resonance theory. 

Let  us now see how the M O R T  approach treats this molecule. In the case of 
pentalene there are again two M O R T  Kekul6 structures: 

K1 = 1 12,  3s, ~045, ~r 

K2 = koz3, q~s,, ~56, ~0171. (20) 

After  some algebra one finds 

(KIIK2) = 0 and <gdn lg2>  = 

The two Kekul6 structures interact with each other, and the ground state equals 
1 �9 tF = A $ ~  where 4, = Ka +K2 with an energy of ~ gwen in units of/3. Pentalene 

molecule is stabilized through resonance between the two Kekul6 structures, 
but the amount  of stabilization (�88 is much smaller than for benzene (1.2/3). 
This explains the relative stabilities of the cyclobutadiene, pentalene and benzene 
molecules. 

In order to discuss the charge alternation let us introduce the one-particle charge 
operator  (2 i. By definition ~ wlOiw~ dr  = 1 while all other matrix elements of O i 
vanish. The expectation value 

q, = ( o %  = <,I, IO 

represents the charge of the state W at the AO w~. One easily finds 

<KIIOi[K~) = (g2lo~lg2) = 21- (i = 1 . . . . .  8) (21) 

i.e. both Kekul6 structures K~ and/s  represent a state with a uniform charge 
density distribution of ~ over all AO-s w~, as intuitively suggested. Concerning 
the diagonal matrix elements one finds 

1 
(KIlO']K2)={ ~ i = 2 , 5 , 7 , 8  

- i = 1, 3 ,  4 ,  6 (22 )  

and hence 

~1+~ i = 2 , 5 , 7 , 8  

<O' )*=  1 1 - ~  i = 1, 3 ,4 ,  6. 

This charge alternation is qualitatively in complete agreement with other 
derivations. 

Let  us now consider the bond length alternation. Since the state q~ =K~+K2 
contains both Kekul6 structures (20) with the same weight, and since these 
structures represent two alternant bonding distributions with interchanged single 
and double bonds, we would expect no bond alternation. This conclusion is 
correct and it can be formalised. Introduce the bond order operator  ps = pii. By 
definition this operator  has a matrix element ~ between AO-s  w~ and w i, while 
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matrix elements of this operator between all other AO-s vanish, (the factor ~ is 
needed in order to take into account the double counting of integrals ~ w~PiJwj d~- 
and ~ wfP'w~ d$). One easily finds e.g. 

(K11p121K1)=~ (-1)I" s=l ~ I q~12(1)q~e12(1) d l  

"'" I ~s(S)p12~ps(S)ds'" I ~67(4)q~P67(4)d4 

= I q~lz(1)p12q)12(1)dl""" I q~67(4)q~ d4 =1 

and similarly (KllPZ3[Kl> = 0, as suggested by the intuitive interpretation of the 
Kekul4 structure K1 (see Fig. 5). MORT Kekul6 structure K1 represents a 
structure with a bond order �89 between AO-s wl and w2, and a vanishing bond 
order between AO-s w2 and w3. The bond order between AO-s wl and w2 is 
only �89 and not 1, since K1 represents only "one half" (either spin-up or spin-down) 
of the total wavefunction. A similar meaning can be given to all other bond 
orders in structures K1 and K2. In order to find out bond orders represented by 
a state & the off-diagonal matrix elements (KtlpiilK2) are also needed. After 
some algebra one finds 

(KlIp121K2) = (K dP231K2> . . . . .  (K~IpT~[K2) = 0 (23) 

for all the bond orders along the perimeter of the pentalene molecule. The only 
nonvanishing matrix element corresponds to the bond order between the AO-s 
w7 and w8 accross the bridge of the pentalene molecule 

(KIlP 781K2> = (6. 

One hence finds 

<e'>6 

and accordingly 

(P">• = �89 

for all bond orders along the perimeter of the pentalene molecule. Using the 
simple Coulson bond length-bond order relation one would thus predict equal 
bond length along the perimeter of the pentalene molecule. Here the MORT 
approach does not predict bond length alternation. But let us consider this 
problem in more detail. 

Our Hamiltonian is a Hiickel Hamiltonian H = A - n I  which takes into account 
only the one particle contribution due to the resonance integral/3. The ground 
state �9 = A~b(~ however represents a state with separated charge densities, and 
this charge separation should lead through Coulomb interaction to destabiliz- 
ation. In the simplest approximation one can assume that this two-particle 
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interaction is of the form 

V = - t o  Y. ( q i - 1 )  2 (24) 
i=1 

where to is a pa ramete r  in the B units and (qi - 1) is the net charge on the carbon 
a tom (i). This assumption takes into account only the mutual  repulsion of two 
electrons, one with the spin-up and the other  with the spin-down, situated at 
the same a tom (i). It  is analogous to the to-technique [18, 19, 20] and it introduces 
the two particle interactions at the simplest level possible. Assume now the state 
~b to be of the general form 

r = r (a) = K1 cos tx + K 2  sin a (25) 

where a is to be  determined through the minimization of the energy. Using Eqs. 
(21)-(23) one obtains for a state W(a) = A r  ( a ) r  (a)  

i { l + ~ s i n 2 a  i = 2 , 5 , 7 , 8  

( Q ) * ( ~ ) =  1 - ~ s i n 2 a  i = 1 , 3 , 4 , 6  

and 

J cos 2 a (i]) = (12), (38), (4 5), (6 7) 

<pij),(~) = | s in  2 a (i]) = (23), (84), (56), (71) 

(e78),v(,~) = 81- sin 2a. 

The energy is 

(H}.(~) 1 . to . 2 = ~ s , n  2oL (V).(~)=-~sm 2a. 

Hence  

E ( a )  = ( H +  V),v(~) = 1 (sin 2oz - 2 sin2 2or) 

in the fl units. If Ito I--- 1 the energy E ( a )  has two ext reme values 

ot I = "rr/4 E1 = (1 - to/2) /4 

a2 = 3zr/4 E2 = ( - 1  - to/2)/4.  

If however  Itol > 1, there are two additional ext reme values 

a3 = ~ arc sm a4 = ~ r / 2 - a a  

E 3  = E 4  = 1/(8to). 

In Fig. 6 E ( a )  is plotted as a function of a for three different values of the 
pa ramete r  to. Provided Itol---1 there is only one minimum. The  corresponding 
eigenstate is the state W = Ad , r  where ~ = K t  + K2, and as shown above, there 
is no bond length alternation. If however  to > 1 there are two minima, one for 
a = or3 and another  one for a = a4. In both cases the two Kekul6 structures K t  
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TI- ,o~  , , , ,  : , . o  . . . . . .  

O./,, oJ = 1.4 

0.3 

~ /;.' /! 

0.1 

-0-1 [- \X,. .,,,r 

-17.2 

Fig. 6. Energy E(a) for three different values of a parameter  oJ in the case of a pentalene molecule. 
If [~o [ <~ 1 there is a stable m i n i mum at ~ = ~r/4 corresponding to the state 4~ = K1 + K2. If ~0 > 1 this 
state becomes unstable  and the two min ima develop corresponding to the  two distorted structures 
of pentalene.  Points a = 0 and a = ~r correspond to the  Kekul6 structure K1. Point  c~ = ~r/2 corres- 
ponds to the  Kekul6 structure K2, while point  a =3~r /4  corresponds to the ant ibonding stare 
~ '  = K1 - K 2 .  The  value ~o = 1.4 is an est imate given by Streitwieser [19, 20] 

a n d  K 2  do not enter the state ~b (a) with equal weights, one of those structures 
is dominant,  and as a result there is a bond order alternation along the perimeter 
of the pentalene molecule. Using a bond length-bond order relationship one 
thus predicts bond length alternation. The resulting distortion changes the 
pentalene molecule from the symmetrical D2h structure to an asymmetrical C2h 
structure. The necessary and sufficient condition for the distortion to occur in 
this simple M O R T  picture is to > 1. Parameterizing the value of to in the 
to-technique approach Streitwieser estimates to = 1.4 [19, 20]. Though this value 
is obtained as the best fit within an MO approach, and hence can not be directly 
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applied to the M O R T  picture, it still suggests that the analogous parameterization 
within the M O R T  approach is likely to produce a value ~0 > 1. 

One should notice the mechanism which is involved here. The Hfiekel interaction 
stabilizes the ground state through the resonance between the two Keku16 
structures and this stabilization is the largest if those structures enter the ground 
state with the same weight. However,  in this case there is a large polarization 
of the electron density causing the destabilization through the Coulomb interac- 
tion. Charge polarization, and hence Coulomb destabilizati0n, vanishes if (~ (a) 
is represented by a single Kekul6 structure. If this Coulomb interaction is strong 
enough, i.e. if in the case of pentalene oJ > 1, then the actual energy minima are 
obtained through a compromise between the stabilizing resonance effect, and 
the destabilizing Coulomb effect. The estimate (w = 1.4) suggests that this is 
actually the case. The result is bond length alternation and the lowering of the 
symmetry. The above approach can equally well be applied to the benzene and 
cyclobutadiene molecules. In the case of the benzene molecule one finds that 
the resonance between the two M O R T  Kekul6 structures does not lead to a 
charge polarization, i.e. in this case (Q~>, = 1 (i = 1 . . . . .  6). There is no Coulomb 
destabilization, and the ground state is the state (17). Benzene is hence predicted 
to exhibit no bond length alternation. In the case of a cyclobutadiene molecule, 
the ground state is already without a potential (24) represented by a single 
Kekul6 structure with manifest bond order alternation. One can easily show that 
the linear combination of the two Kekul6 structures (14) leads to a charge 
separation and hence to a further destabilization of a molecule. The ground 
state is hence represented by either of the two M O R T  Kekul6 structures. 

In conclusion, the introduction of a two-particle interaction (24) leads to a correct 
prediction concerning bond length alternation, at least in the case of the benzene, 
pentalene and cyclobutadiene molecules. This approach can be further general- 
ized to include more complicated systems [10]. 

In the literature there is an extensive treatment of distortions of this kind. Such 
double bond fixations are usually obtained within a framework of a much more 
elaborate theory. Thus Nakajima [15, 21] computes the total ~--electron energy 
for a pre-selected type of bond alternation as a function of a parameter  k, where 
k is defined by the ratio of the "single" to the "double"  bond resonance integral. 
In his method the resonance integral is assumed to be an exponential function 
of interatomic distance, which is in turn a linear function of the bond order  [15, 
21]. Dewar et al. [22] treat this double bond fixation in the framework of an 
SCF MO model. They also assume an essentially exponential dependence of the 
resonance integral on interatomic distance. Binsch et al. [16, 23] present a theory 
which clearly distinguishes first and second order  bond fixation. Only the second 
order bond fixation can lower the symmetry [16, 23]. Their  method requires the 
diagonalization of the bond-bond  polarizability matrix. 

All these approaches are more complicated than the one presented here. It 
should be noted that Binsch et al. express the belief that the polarization of the 
electron density is not likely to be important in lowering the symmetry of a 
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non-alternant,  and they accordingly disregard the corresponding contributions 
[16, 23]. This is not in accord with the above M O R T  approach which attributes 
the distortion in a pentalene to a charge separation alone, without any further 
assumption. 

4. Summary and Conclusion 

The two major approaches to the treatment of quantum chemical problems, MO 
and VB, have both advantages and disadvantages. The VB approach retains a 
loose connection with the classical concept of the chemical bond. The MO 
approach treats correctly the one- and two-particle contributions to the energy 
leading to the stabilization of the molecule. A new approach is proposed combin- 
ing the advantages of both theories. This method retains the resonance concept 
from the VB method, but it treats each particular bond in the MO sense. This 
approach has been called the Molecular Orbital Resonance Theory (MORT). 
The advantages of this method are illustrated with a few simple examples. It is 
shown how in this picture one can easily explain the relative stabilities of benzene, 
pentalene and cyclobutadiene molecules. A Hiickel (4rn + 2) rule is derived for 
the annulenes. The charge alternation in the case of the pentalene molecule is 
successfully explained. Extending the Hiickel Hamiltonian to include a simple 
analogue of the o)-technique a bond length alternation in the pentalene molecule 
is explained. 

All these results are obtained on a very simple level of approximation and they 
can be generalized. The generalization of the Hiickel rule to include all the 
conjugated hydrocarbon molecules will be presented in a forthcoming paper. 
The rule thus obtained does not always coincide with the Hfickel rule [10]. One 
can also generalize the charge alternation as well as bond length alternation. 
Using M O R T  one can derive many other simple regularities and rules [10]. This 
is the conceptual advantage of this approach since it offers a simple qualitative 
explanation for many regularities observed in conjugated systems. In this respect 
the M O R T  approach goes beyond the Hiickel theory which can also give some 
simple rules. Most importantly, the M O R T  approach can be generalized to 
incclude more resonance structures and more sophisticated Hamiltonians. It can 
in fact be made equivalent to the full CI. 

In the forthcoming papers a systematic generalization and presentation of this 
method will be given. 
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Note added in proof 

Using  the  so ca l led  "s igni f icant  e l ec t ron  s t ruc tu res"  (SES), which are  c losed  shell  
conf igura t ions  iden t ica l  to  P C I L O  g r o u n d  s ta te  s t ruc tures  [9], G r / i n d l e r  i n d e p e n -  
den t l y  de r i ved  the  Hi i cke l  (4m + 2) - ru le  for  annu l enes  (Gr / ind le r ,  W. :  Z.  Chem.  
20, 391 (1980)).  T h e  two SES  s t ruc tures  s tab i l ize  b e n z e n e  by  6/17/3  (ibid. 19, 
236 (1979)) ,  which  shou ld  be  c o m p a r e d  wi th  the  M O R T - 1  resul t  of 1.2/3. In  
genera l ,  M O R T -  1 func t ion  has  s ignif icant ly l ower  ene rgy  than  the  c o r r e s p o n d i n g  
SES funct ion ,  and  hence  it shou ld  r e p r e s e n t  b e t t e r  the  " t r u e "  g r o u n d  s ta te .  


